Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Signal ; 104: 110588, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36621728

RESUMO

The receptor tyrosine kinase orphan receptor 1 (ROR1) is a receptor for WNT5A and related Wnt proteins, that play an important role during embryonic development by regulating cell migration, cell polarity, neural patterning, and organogenesis. ROR1 exerts these functions by transducing signals from the Wnt secreted glycoproteins to the intracellular Wnt/PCP and Wnt/Ca++ pathways. Investigations in adult human cells, particularly cancer cells, have demonstrated that besides these two pathways, the WNT5A/ROR1 axis can activate a number of signaling pathways, including the PI3K/AKT, MAPK, NF-κB, STAT3, and Hippo pathways. Moreover, ROR1 is aberrantly expressed in cancer and was associated with tumor progression and poor survival by promoting cell proliferation, survival, invasion, epithelial to mesenchymal transition, and metastasis. Consequently, numerous therapeutic tools to target ROR1 are currently being evaluated in cancer patients. In this review, we will provide a detailed description of the signaling pathways regulated by ROR1 in cancer and their impact in tumor progression.


Assuntos
Transição Epitelial-Mesenquimal , Neoplasias , Gravidez , Feminino , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Neoplasias/genética , Proteínas Wnt/metabolismo , Linhagem Celular Tumoral , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo
2.
J Cell Commun Signal ; 17(1): 75-88, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35723796

RESUMO

Receptor tyrosine kinase-like orphan receptor 2 (ROR2) is a protein with important functions during embryogenesis that is dysregulated in human cancer. An intriguing feature of this receptor is that it plays opposite roles in different tumor types either promoting or inhibiting tumor progression. Understanding the complex role of this receptor requires a more profound exploration of both the altered biological and molecular mechanisms. Here, we describe that ROR2 promotes Epithelial-Mesenchymal Transition (EMT) by inducing cadherin switch and the upregulation of the transcription factors ZEB1, Twist, Slug, Snail, and HIF1A, together with a mesenchymal phenotype and increased migration. We show that ROR2 activates both p38 and ERK mitogen-activated protein kinase pathways independently of Wnt5a. Further, we demonstrated that the upregulation of EMT-related proteins depends on the hyperactivation of the ERK pathway far above the typical high constitutive activity observed in melanoma. In addition, ROR2 also promoted ERK phosphorylation, EMT, invasion, and necrosis in xenotransplanted mice. ROR2 also associates with EMT in tumor samples from melanoma patients where analysis of large cohorts revealed that increased ROR2 levels are linked to EMT signatures. This important role of ROR2 translates into melanoma patient' s prognosis since elevated ROR2 levels reduced overall survival and distant metastasis-free survival of patients with lymph node metastasis. In sum, these results demonstrate that ROR2 contributes to melanoma progression by inducing EMT and necrosis and can be an attractive therapeutic target for melanoma.

3.
Explor Target Antitumor Ther ; 3(1): 11-26, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36046354

RESUMO

Aim: B-cell lymphoma-2 (Bcl-2)-like protein-10 (Bcl2L10) is the less studied member of Bcl-2 family proteins, with the controversial role in different cancer histotypes. Very recently, Bcl2L10 expression in melanoma tumor specimens and its role in melanoma response to therapy have been demonstrated. Here, the involvement of Bcl2L10 on the in vitro and in vivo properties associated with melanoma aggressive features has been investigated. Methods: Endogenous Bcl2L10 protein expression was detected by western blotting analysis in a panel of patient-derived and commercially available human melanoma cells. In vitro assays to evaluate clonogenicity, cell proliferation, cell migration, cell invasion, and in vitro capillary-like structure formation [vasculogenic mimicry (VM)] have been performed by using human melanoma cells stably overexpressing Bcl2L10 or transiently transfected for loss/gain function of Bcl2L10, grown under two- or three-dimensional (3D) conditions Xenograft melanoma model was employed to evaluate in vivo tumor growth and angiogenesis. Results: Results demonstrated that Bcl2L10 acts as an inducer of in vitro cell migration, invasion, and VM, while in vitro cell proliferation, in vivo tumor growth, as well as colony formation properties were not affected. Dissecting different signaling pathways, it was found that Bcl2L10 positively affects the phosphorylation of extracellular-signal-regulated kinase (ERK) and the expression of markers of cell invasion, such as urokinase plasminogen activator receptor (uPAR) and matrix metalloproteinases (MMPs). Of note, Bcl2L10-dependent in vitro migration, invasion, and VM are linked to uPAR. Bcl2L10 also negatively regulates the intracellular calcium level. Finally, reduced invasion capability in 3D spheroid invasion assay of melanoma cells transiently overexpressing Bcl2L10 was observed after treatment with inhibitors of MMPs and uPAR. Conclusions: Overall, data reported in this paper provide evidence supporting a positive role of Bcl2L10 in melanoma aggressive features.

4.
Med Oncol ; 39(10): 141, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35834068

RESUMO

Several diagnostic and prognostic markers for melanoma have been identified in last few years. However, their actual contribution to melanoma progression have not been investigated in detail. This study was aimed to identify genes, biological processes, and signaling pathways implicated in melanoma progression by applying bioinformatics analysis. We identified nine differentially expressed genes (DEGs) (IL36RN, KRT6A, KRT6B, KRT16, S100A7, SPRR1A, SPRR1B, SPRR2B, and KLK7) that were upregulated in primary melanoma compared with metastatic melanoma in all five datasets analyzed. All these genes except IL36RN, both form a protein-protein interaction network and have cellular functions associated with constitutive processes of keratinocytes. Thus, they were generically termed Epidermal Development and Cornification (EDC) genes. The differential expression of these genes in primary and metastatic melanoma was confirmed in the TCGA-SKCM cohort. High expression of the EDC genes correlated with reduced tumor thickness in primary melanoma and shorter survival in metastatic melanoma. Analysis of DEGs from primary melanoma patients displaying high or low expression of all eight EDC revealed that the upregulated genes are enriched in biological process related to cell migration, extracellular matrix organization, invasion, and Epithelial-Mesenchymal Transition. Further analysis of enriched curated oncogenic genesets together with RPPA data of phosphorylated proteins revealed the activation of MEK, ATF2, and EGFR pathways in tumors displaying high expression of EDC genes. Thus, EDC genes may contribute to melanoma progression by promoting the activation of MEK, ATF2, and EGFR pathways together with biological processes associated with tumor aggressiveness.


Assuntos
Melanoma , Neoplasias Cutâneas , Biologia Computacional , Receptores ErbB/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Interleucinas/metabolismo , Melanoma/genética , Melanoma/patologia , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia
5.
Cell Mol Biol Lett ; 27(1): 23, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35260073

RESUMO

BACKGROUND: ROR2 is a tyrosine-kinase receptor whose expression is dysregulated in many human diseases. In cancer, ROR2 stimulates proliferation, survival, migration, and metastasis, and is associated with more aggressive tumor stages. The purpose of this work is to study the role of ROR2 in the chemoresistance of melanoma. METHODS: Gain- and loss-of-function experiments were used to study the biological function of ROR2 in melanoma. Cell death induced by chemotherapeutic drugs and BH-3 mimetics was evaluated using crystal violet cytotoxicity assays and annexin V/propidium iodide staining. Western blots were used to evaluate the expression of proteins implicated in cell death. The differences observed between cells with manipulation of ROR2 levels and control cells were evaluated using both Student's t-test and ANOVA. RESULTS: We describe that ROR2 contributes to tumor progression by enhancing the resistance of melanoma cells to both chemotherapeutic drugs and BH-3 mimetics. We demonstrate that ROR2 reduced cell death upon treatment with cisplatin, dacarbazine, lomustine, camptothecin, paclitaxel, ABT-737, TW-37, and venetoclax. This effect was mediated by the inhibition of apoptosis. In addition, we investigated the molecular mechanisms implicated in this role of ROR2. We identified the MDM2/p53 pathway as a novel target of ROR2 since ROR2 positively regulates MDM2 levels, thus leading to p53 downregulation. We also showed that ROR2 also upregulates Mcl-1 and Bcl2-xL while it negatively regulates Bax and Bid expression. The effect of ROR2 on the expression of these proteins is mediated by the hyperactivation of ERK. CONCLUSIONS: These results demonstrate that ROR2 contributes to melanoma progression by inhibiting apoptosis and increasing chemoresistance. These results not only position ROR2 as a marker of chemoresistance but also support its use as a novel therapeutic target in cancer.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular , Melanoma , Proteínas Proto-Oncogênicas c-bcl-2 , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase , Proteína Supressora de Tumor p53 , Apoptose , Linhagem Celular Tumoral , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Melanoma/tratamento farmacológico , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
6.
J Biomed Sci ; 28(1): 76, 2021 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-34774050

RESUMO

BACKGROUND: Receptor tyrosine kinase-like orphan receptor 2 (ROR2) is a Wnt5a receptor aberrantly expressed in cancer that was shown to either suppress or promote carcinogenesis in different tumor types. Our goal was to study the role of ROR2 in melanoma. METHODS: Gain and loss-of-function strategies were applied to study the biological function of ROR2 in melanoma. Proliferation assays, flow cytometry, and western blotting were used to evaluate cell proliferation and changes in expression levels of cell-cycle and proliferation markers. The role of ROR2 in tumor growth was assessed in xenotransplantation experiments followed by immunohistochemistry analysis of the tumors. The role of ROR2 in melanoma patients was assessed by analysis of clinical data from the Leeds Melanoma Cohort. RESULTS: Unlike previous findings describing ROR2 as an oncogene in melanoma, we describe that ROR2 prevents tumor growth by inhibiting cell-cycle progression and the proliferation of melanoma cells. The effect of ROR2 is mediated by inhibition of Akt phosphorylation and activity which, in turn, regulates the expression, phosphorylation, and localization of major cell-cycle regulators including cyclins (A, B, D, and E), CDK1, CDK4, RB, p21, and p27. Xenotransplantation experiments demonstrated that ROR2 also reduces proliferation in vivo, resulting in inhibition of tumor growth. In agreement with these findings, a higher ROR2 level favors thin and non-ulcerated primary melanomas with reduced mitotic rate and better prognosis. CONCLUSION: We conclude that the expression of ROR2 slows down the growth of primary tumors and contributes to prolonging melanoma survival. Our results demonstrate that ROR2 has a far more complex role than originally described.


Assuntos
Ciclo Celular , Proliferação de Células , Melanoma/genética , Proteínas Proto-Oncogênicas c-akt/genética , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo
7.
Cancers (Basel) ; 13(1)2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-33396645

RESUMO

The anti-apoptotic proteins from the Bcl-2 family are important therapeutic targets since they convey resistance to anticancer regimens. Despite the suspected functional redundancy among the six proteins of this subfamily, both basic studies and therapeutic approaches have focused mainly on BCL2, Bcl-xL, and MCL1. The role of BCL2L10, another member of this group, has been poorly studied in cancer and never has been in melanoma. We describe here that BCL2L10 is abundantly and frequently expressed both in melanoma cell lines and tumor samples. We established that BCL2L10 expression is driven by STAT3-mediated transcription, and by using reporter assays, site-directed mutagenesis, and ChIP analysis, we identified the functional STAT3 responsive elements in the BCL2L10 promoter. BCL2L10 is a pro-survival factor in melanoma since its expression reduced the cytotoxic effects of cisplatin, dacarbazine, and ABT-737 (a BCL2, Bcl-xL, and Bcl-w inhibitor). Meanwhile, both genetic and pharmacological inhibition of BCL2L10 sensitized melanoma cells to cisplatin and ABT-737. Finally, BCL2L10 inhibited the cell death upon combination treatments of PLX-4032, a BRAF inhibitor, with ABT-737 or cisplatin. In summary, we determined that BCL2L10 is expressed in melanoma and contributes to cell survival. Hence, targeting BCL2L10 may enhance the clinical efficacy of other therapies for malignant melanoma.

8.
Cells ; 8(9)2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31510045

RESUMO

Wnt5a signaling has been implicated in the progression of cancer by regulating multiple cellular processes, largely migration and invasion, epithelial-mesenchymal transition (EMT), and metastasis. Since Wnt5a signaling has also been involved in inflammatory processes in infectious and inflammatory diseases, we addressed the role of Wnt5a in regulating NF-κB, a pivotal mediator of inflammatory responses, in the context of cancer. The treatment of melanoma cells with Wnt5a induced phosphorylation of the NF-κB subunit p65 as well as IKK phosphorylation and IκB degradation. By using cDNA overexpression, RNA interference, and dominant negative mutants we determined that ROR1, Dvl2, and Akt (from the Wnt5a pathway) and TRAF2 and RIP (from the NF-κB pathway) are required for the Wnt5a/NF-κB crosstalk. Wnt5a also induced p65 nuclear translocation and increased NF-κB activity as evidenced by reporter assays and a NF-κB-specific upregulation of RelB, Bcl-2, and Cyclin D1. Further, stimulation of melanoma cells with Wnt5a increased the secretion of cytokines and chemokines, including IL-6, IL-8, IL-11, and IL-6 soluble receptor, MCP-1, and TNF soluble receptor I. The inhibition of endogenous Wnt5a demonstrated that an autocrine Wnt5a loop is a major regulator of the NF-κB pathway in melanoma. Taken together, these results indicate that Wnt5a activates the NF-κB pathway and has an immunomodulatory effect on melanoma through the secretion of cytokines and chemokines.


Assuntos
Melanoma/metabolismo , NF-kappa B/metabolismo , Proteína Wnt-5a/metabolismo , Comunicação Autócrina , Linhagem Celular Tumoral , Quimiocinas/metabolismo , Citocinas/metabolismo , Proteínas Desgrenhadas/metabolismo , Humanos , Quinase I-kappa B/metabolismo , Proteínas I-kappa B/metabolismo , NF-kappa B/antagonistas & inibidores , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Transdução de Sinais , Fator 2 Associado a Receptor de TNF/metabolismo , Fator de Transcrição RelA/metabolismo
9.
Cell Biosci ; 9: 3, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30622697

RESUMO

BACKGROUND: The PI3K/Akt and the STAT3 pathways are functionally associated in many tumor types. Both in vitro and in vivo studies have revealed that either biochemical or genetic manipulation of the STAT3 pathway activity induce changes in the same direction in Akt activity. However, the implicated mechanism has been poorly characterized. Our goal was to characterize the precise mechanism linking STAT3 with the activity of Akt and other AGC kinases in cancer using melanoma cells as a model. RESULTS: We show that active STAT3 is constitutively bound to the PDK1 promoter and positively regulate PDK1 transcription through two STAT3 responsive elements. Transduction of WM9 and UACC903 melanoma cells with STAT3-small hairpin RNA decreased both PDK1 mRNA and protein levels. STAT3 knockdown also induced a decrease of the phosphorylation of AGC kinases Akt, PKC, and SGK. The inhibitory effect of STAT3 silencing on Akt phosphorylation was restored by HA-PDK1. Along this line, HA-PDK1 expression significantly blocked the cell death induced by dacarbazine plus STAT3 knockdown. This effect might be mediated by Bcl2 proteins since HA-PDK1 rescued Bcl2, Bcl-XL, and Mcl1 levels that were down-regulated upon STAT3 silencing. CONCLUSIONS: We show that PDK1 is a transcriptional target of STAT3, linking STAT3 pathway with AGC kinases activity in melanoma. These data provide further rationale for the ongoing effort to therapeutically target STAT3 and PDK1 in melanoma and, possibly, other malignancies.

10.
ChemMedChem ; 13(16): 1732-1740, 2018 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-29931741

RESUMO

Over the last decades, much effort has been devoted to the design of the "ideal" library for screening, the most promising strategies being those which draw inspiration from biogenic compounds, as the aim is to add biological relevance to such libraries. On the other hand, there is a growing understanding of the role that molecular complexity plays in the discovery of new bioactive small molecules. Nevertheless, the introduction of molecular complexity must be balanced with synthetic accessibility. In this work, we show that both concepts can be efficiently merged-in a minimalist way-by using very simple guidelines during the design process along with the application of multicomponent reactions as key steps in the synthetic process. Natural phenanthrenoids, a class of plant aromatic metabolites, served as inspiration for the synthesis of a library in which complexity-enhancing features were introduced in few steps using multicomponent reactions. These resulting chemical entities were not only more complex than the parent natural products, but also interrogated an alternative region of the chemical space, which led to an outstanding hit rate in an antiproliferative assay: four out of twenty-six compounds showed in vitro activity, one of them being more potent than the clinically useful drug 5-fluorouracil.


Assuntos
Antineoplásicos/farmacologia , Fenantrenos/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Desenho de Fármacos , Humanos , Estrutura Molecular , Fenantrenos/síntese química , Fenantrenos/química , Estudo de Prova de Conceito , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA